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SUMMARY

The performance of parallel subdomain method with overlapping is analysed in the case of the 3D
coupled boundary-value problem of continuous flow electrophoresis which is governed by Navier–Stokes
equations coupled with convection–diffusion and potential equations. Convergence of parallel synchronous
and asynchronous iterative algorithms is studied. Comparison between implemented explicit and implicit
schemes for the transport equation is made using these algorithms and shows that both methods provide
similar results and comparable performances. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Simulation of multi-physics problems requires powerful and efficient algorithms. The continuous
flow electrophoresis is a typical example of such problem. It consists in separation of several species
in a carrier flow by means of an electrical field. For example, in biological applications it is applied
to protein separation. Previous works have been developed on the modelling of this process by
coupled boundary-value problems. Among such physical models we refer to the one developed
by Clifton, Sanchez and all [1–3] that consists in the coupling of Navier–Stokes equations for
the hydrodynamic part with electrical field potential equation and as many convective transport
equations as number of proteins to be separated. Discretization of this system of nonlinear partial
differential equation leads to the solution of large-scale time-dependent algebraic systems. In order
to minimize the computational cost, parallel processing is an appropriate answer. Unfortunately,
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in parallel computations, synchronizations occur during the communications at the beginning
of each iteration, when a processor waits for a message sent by the others processors. Thus,
synchronizations of concurrent parallel tasks induce idle times in the computation and consequently
increase elapsed time. The aim of the present study is to present a particular class of parallel
methods, the asynchronous algorithms, that do not require synchronization between processors.
Parallel asynchronous algorithms are aimed at suppressing idle times without using load balancing
techniques. The processors can work concurrently without any order or synchronization.

Furthermore, subdomains methods are well adapted to parallel computations. Among the clas-
sical subdomain methods, one of the most efficient [4] for solving boundary-value problem is
the Schwarz alternating method with overlapping between the subdomains. The main difficulty
that arises in the implementation of domain decomposition methods is the handling of the com-
putational overhead due to the synchronizations between processors. Thus, in order to solve the
electrophoresis problem we propose in the present study to implement and analyse a variant of
parallel asynchronous Schwarz alternating method derived from a recent study [5].

The analysis of the behaviour of this class of algorithms is performed in order to show the
coherence and consistence of such parallel chaotic methods. It is linked to the specific properties
of the discrete operators. In particular, the convergence of asynchronous algorithms, first analysed
by Chazan andMiranker for linear systems [6], has been established for nonlinear systems in various
theoretical frameworks [7–10]. Moreover, in classical asynchronous algorithms [6], communication
cannot occur during the solution of a subproblem. Then, theoretical studies have been carried out
on the concept of parallel asynchronous algorithms with flexible communication, which allows
communication at any time of the computation. The convergence of this former algorithm has
been analysed in various contexts, particularly in the framework of M-matrix and more generally
M-functions in the nonlinear case [5, 11].

Due to dominant convection in the transport equation, the associated discretized problem is
numerically ill-conditioned. So the transport equation has been solved by using two different
numerical schemes the first one implicit and the second one explicit. In the paper both methods
are compared.

The paper is organized as follows: Section 2 presents the physical problem, particularly the
partial differential equations modelling the electrophoresis phenomenon. In Section 3, we present
the discretization of the boundary-value problem and we derive a common property of the discrete
operators allowing to study the convergence of the parallel asynchronous Schwarz alternating
method. Section 4 is devoted to the analysis of the behaviour of the algorithms, particularly the
convergence of the general iterative methods considered in the present study. Finally, in the last
section, we draw the main conclusions of sequential and parallel numerical experiments.

2. CONTINUOUS FLOW ELECTROPHORESIS

2.1. Principle

This process takes place in a very thin parallelepipedic cell; a solution flows at low speed through
this cell (see Figure 1). The solution constituted by the mixture containing the proteins to separate
is injected in the carrier fluid by the face C of the cell in the shape of a sharp liquid filament. An
electrical field is created through the cell by two plane electrodes located on both sides of the cell,
on the faces E and F . The proteins are transferred by the flow along the cell and due to the effect
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Figure 1. The principle of continuous flow electrophoresis.

of the electrical field they migrate with the speed W=V + �E, where V is the flow velocity and
�E is the migration velocity. The various species of protein having different electrical mobilities,
then can be collected separately on the face D.

In the sequel, the flow is assumed to be isothermal and without chemical reaction; consequently
the various physical coefficients arising in the phenomenon are constant. The physical phenomena
related to the present study concern:

• the main flow of the fluid in the 3D space, which is perturbated by the effects of electro-
hydrodynamics,

• the transport and the migration of the proteins,
• the electrokinetic effect, connected to the spatial changes of the conductivity due to the
concentration of the various ionic species.

2.2. Physical model

A physical model of the problem was developed in [1–3]. Note that all variables, parameter and
equations given in the sequel are non-dimensional in order to simplify the presentation. In the
relations governing the electrophoresis flow, the problem can be summarized to compute in the
bounded domain � included in the 3D space

• the velocity field V= (v1, v2, v3),
• the pressure p,
• the electrical field E= (E1, E2, E3),
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• for each protein m, the concentration cm ,
• the electrical potential �.

The physical parameters arising in the mathematical model are

• the Reynolds number Re,
• the dielectric permittivity �,
• the Peclet number associated to the transport of the protein m: Pe
• the electrical conductivity K ,
• the electrophoretic mobility of the protein m: �m .

2.2.1. Equations. In the present problem we consider the flow of an incompressible viscous fluid
in the domain �. The main flow is described by the 3D Navier–Stokes equation taking into account
the external strength field

�vi

�t
− 1

Re
�vi +

3∑
j=1

v j
�vi

�x j
= − �p

�xi
+ � div(EiE), i = 1, 2, 3 (1)

div(V) = 0 (2)

where

div(EiE)=
3∑
j=1

�
�x j

Ei E j

The transport equation for a protein m is modelled by the following unsteady convection–
diffusion equation

�cm
�t

− 1

Pe
�cm +

3∑
i=1

(vi + �m Ei )
�cm
�xi

= 0 (3)

The potential � is governed by a generalized Poisson equation

−div(K grad�) = 0 (4)

which can also be written as follows:

−
3∑
j=1

�
�x j

(
K

��

�x j

)
= 0

The conductivity K is calculated using the concentrations of the n p proteins, by the relation

K = K0 +
n p∑
m=1

�mcm

In the sequel, we will consider the migration of only one protein. In this case, the expression of
the conductivity becomes

K = K0 + c (5)

where c is the concentration of the considered protein; thus, its electrophoretic mobility is noted, �.
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The equation governing the flow (1) is coupled with the potential equation (4) by the relation

E= −grad(�) (6)

The previous partial differential equations (1)–(4) must be completed by the definition of
boundary values induced by physical considerations.

2.2.2. Boundary conditions. The fluid comes in the cell by the upper face C and comes out by the
lower face D. So we consider that the velocity fulfils non-homogeneous Dirichlet boundary condi-
tion on the face C and homogeneous Neumann boundary condition on the face D: v1/C = v3/C = 0,
v2/C = v0; (�vi/�n)/D = 0 for i = 1, 2, 3. Furthermore, the velocities v1 and v3 are zero on the
other four faces; so they fulfil homogeneous Dirichlet boundary conditions on the faces A, B, E
and F : v1/A = v3/A = 0; v1/B = v3/B = 0; v1/E = v3/E = 0; v1/F = v3/F = 0. The axial velocity v2
is zero on the faces A and B: v2/A = v2/B = 0. On the faces E and F , it fulfils homogeneous
Neumann boundary condition: (�v2/�n)/E = (�v2/�n)/F = 0.

The proteins come in the cell by the face C ; so on this upper face the concentration is known and
it fulfils non-homogeneous Dirichlet boundary condition: c/C = c0. Furthermore, the concentration
is free on the other five faces of the cell; so we can consider that on these five faces the concentra-
tion fulfils homogeneous Neumann boundary conditions: (�c/�n)/A= (�c/�n)/B = (�c/�n)/E =
(�c/�n)/F = (�c/�n)/D = 0.

The potential fulfils Dirichlet boundary conditions on all the faces. As the potential is known and
constant at every points of the electrodes, i.e. on the two lateral faces E and F : �/E = �0; �/F = 0.
Furthermore, the boundary conditions on faces A and B are obtained by a linear interpolation
between the values of the potential defined on the electrodes: �/A = �/B = (x1/L)�0, where L
is the width of the cell. On the horizontal faces C and D, the boundary conditions are obtained
by the solution of the potential equation restricted to each upper and lower face; these boundary
conditions are preliminarily fixed. As the concentration on the face C is constant, the potential on
this face is computed only once: �/C = �C . On the other hand the concentration on the face D
changes in process of time. Then, at each time step the potential must be computed on this face
in order to obtain the boundary condition: �/D = �D(t).

3. DISCRETIZATIONS

In the present section, we treat the discretization of the boundary-value problems which describe
the evolution of the electrophoresis problem. Then we derive a common property of the discrete
operators allowing to study the convergence of the parallel asynchronous domain decomposition
methods.

3.1. Fluid flow equations

The incompressible Navier–Stokes equation is solved using pressure-implicit with splitting of
operators (PISO) method [12]. The solution process at each time step is split into three separate
steps: a predictor step and two corrector steps, where the operations on the velocity are decoupled
from those on the pressure.
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Let (vni )i = 1,2,3 and pn the values of velocity and pressure at the nth time step. The predictor
step consists in computing one time step for Equation (1) by leaving the pressure unchanged. An
intermediate velocity (v

n+1/3
i )i=1,2,3 is obtained. Then, each corrector step consists in:

1. solving the mass conservation equation (2) where the pressure’s gradient is substituted by
the velocity;

2. correcting the former approximate velocity with the computed pressure.

Then the velocities (v
n+2/3
i )i = 1,2,3, (vn+1

i )i = 1,2,3 and the pressures pn+1/2, pn+1 are obtained.
The discretization of the equations involved in the PISO method with finite volume method [13]

leads to five linear systems. Note that both matrices are M-matrices [14, 15], i.e. matrices with
strictly positive diagonal entries, non-positive off-diagonal entries and strictly diagonally dominant
or irreducibly diagonally dominant (see [16]). Note that the centred discretization scheme applied
to the convection terms of Equation (1) may not necessarily lead to M-matrices (see [17]).

3.2. Transport equation

If the transport equation is solved with the implicit scheme, analogously the finite difference
discretization of the transport equation (3) leads always to M-matrices when upwind scheme is
used to discretize the convection terms [15].

Moreover, as diffusion coefficients are very low, false diffusion may occur. That is the reason
why the MPDATA algorithm [18] has been implemented to solve the transport equation (3). This
method is based on the classical donor-cell explicit scheme; therefore, the use of a solver is
pointless.

The first stage of the method consists in computing one step of the former scheme. Then,
the expression of false diffusion, given by a second order Taylor development, is transformed
to an antidiffusive convection velocity. Thus, donor-cell scheme is applied once again, with the
antidiffusive velocity in order to counter the effects of false diffusion. Furthermore, this process
can be repeated several times to improve the numerical results. In our simulations, second-order
MPDATA algorithm have been used.

3.3. Potential equation

The potential equation is discretized with a finite difference scheme. As the conductivity K
in the term −(�/�xi )(K��/�xi ) is not constant, the actual discretization scheme is the mean of
forward–backward and backward–forward scheme. For example, consider the 1D potential equation
−(�/�x)(K��/�x) and a uniform mesh where h is the discretization step. The forward–backward
scheme leads to

− �
�x

(
K

��

�x

)
= 1

h

(
K (xi+1)

�(xi+1) − �(xi )

h
− K (xi )

�(xi ) − �(xi−1)

h

)

and the backward–forward scheme leads to

− �
�x

(
K

��

�x

)
= 1

h

(
K (xi )

�(xi+1) − �(xi )

h
− K (xi−1)

�(xi ) − �(xi−1)

h

)

Finally, it can be shown that the considered numerical scheme leads also to an M-matrix [15, 17].
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4. SOLUTION OF LINEAR SYSTEMS BY THE PARALLEL ASYNCHRONOUS SCHWARZ
ALTERNATING METHOD

4.1. Parallel synchronous and asynchronous Schwarz algorithms

Domain decomposition methods, such as the Schwarz algorithm introduced by Lions [19–21],
are well suited to the parallel solution of boundary-value problems (see [4]). In these kind of
methods, in order to parallelize the computation, the domain of a partial derivative equation is
splitted into parallelepiped subdomains. Thus, sequences of smaller subproblems are solved on each
processor of a parallel computer in order to compute a solution of the global problem; practically
more accuracy is obtained. Consider a boundary-value problem � · u = f on a domain � with
boundary condition B · u = g on ��. For the sake of simplicity, we consider a decomposition in
two subdomains �1 and �2.

Parallel asynchronous Schwarz algorithms for two processors consists in solving at each iteration:

⎧⎪⎪⎨
⎪⎪⎩

�1 · ur+1
1 = f1 on �1

B1 · ur+1
1 = g1 on �� ∩ �1

ur+1
1 = ũr2 on ��1 ∩ �2

and

⎧⎪⎪⎨
⎪⎪⎩

�2 · ur+1
2 = f2 on �2

B2 · ur+1
2 = g2 on �� ∩ �2

ur+1
2 = ũr1 on ��2 ∩ �1

(7)

where ũr1 and ũr2 denote the available values of the components of the iterate vector (u1, u2) at
the current iteration. In the synchronous algorithm, ũr1 = ur1 and ũr2 = ur2. Besides, in the classical

asynchronous algorithm (see [6, 7]), these components may be delayed as follows: ũr1 = u
�1(r)
1 and

ũr2 = u
�2(r)
2 , with �i (r)�0, i = 1, 2. Finally, in the case of asynchronous algorithm with flexible

communication (see [5, 11]), ũri are not necessarily associated with components that are labelled
by an outer iteration number as communication may occur at any time. Then, in this class of
method, partial updates, i.e. the current value of any component of the iterate vector, can be used
at any time in the computation. Thus, flexible data exchanges between processors are allowed; as
a consequence, the coupling between communication and computation can be improved.

In the sequel, we will focus on cases where � is a linear operator. Then, the discretization
matrix of the operator � will be denoted by A, the right-hand side of the linear system derived
from discretization by F and its associated discrete solution by X .

4.2. Numerical behaviour of the parallel algorithms

In the previous section, we have shown that the linearization and the discretization of the 3D
continuous flow electrophoresis problem leads to the solution of seven linear algebraic systems;
furthermore, the matrices arising in these seven linear systems are all M-matrices. According to
previous defined notations, we consider the following system of algebraic equations:

A · X = F (8)

where A∈L(Rn), X ∈ Rn and F ∈ Rn . Furthermore, assume that

A is an M-matrix (9)
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The numerical solution of (8) by the Schwarz alternating method is equivalent to the solution of
the following system:

Ã · X̃= F̃ (10)

where Ã, X̃ and F̃ are derived from the augmentation process of the Schwarz alternating method
[22]. This process is a theoretical model that represents the solution of the algebraic system (8)
by a Schwarz domain decomposition method. In the implementation of the algorithms, Ã and F̃

are not explicitly computed. According to a result of Evans and Deren [22], the matrix Ã is also
an M-matrix. So, system (10), derived from the augmentation process, has the same property as
in the initial algebraic system (8).

Let � ∈ N be a positive integer and consider now the following block decomposition of problem
(10) into � subproblems

�∑
i=1

Ãi j · X̃ j = F̃i ∀i ∈ {1, . . . , �} (11)

where X̃i ∈ Rni and F̃i ∈ Rni , where ni denotes the size of the i th block of the previous vectors
and Ã= (Ãi j )1�i, j��, according to the associated block decomposition.

Consider now the solution of subproblems (11) by the asynchronous parallel iteration which
can be written as follows:

Ãi i · X̃r+1
i = F̃i − ∑

j �=i
Ãi j · W̃ j if i ∈ s(r)

X̃
r+1
i = X̃

r
i if i /∈ s(r)

(12)

where {W̃1,W̃2, . . . ,W̃�} are the available values of the components (X̃ j ) j �=i , which will be
specified more precisely in the sequel, and S={s(r)}r∈N is a sequence of non-empty subsets of
{1, 2, . . . , �}. In other words, s(r) is the subset of the subscripts of the components updated at the
r th iteration. In the sequel, we will also consider the vector

R={�1(r), . . . , ��(r)}r∈N

denoting a sequence of integer vectors from N�. In order to take into account the asynchronism
between the processors, R models the delays between the parallel updates of each component, at
the r th iteration. Furthermore, S and R verify the following assumptions:

∀i ∈ {1, 2, . . . , �} the set {r ∈ N|i ∈ s(r)} is unbounded
∀i ∈ {1, 2, . . . , �} ∀r ∈ N, 0��i (r)�r

∀i ∈ {1, 2, . . . , �} lim
r→∞ �i (r) = +∞

Remark 1
Classically, when �i (r) = r for all i ∈ {1, . . . , �} and for all r ∈ N, then (12) models a synchronous
Schwarz alternating method.
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For the solution of system (8), the parallel asynchronous Schwarz alternating method with flexible
communications corresponds to the more general model of parallel asynchronous iterations. In such
a case, the access to the available values of the iterate vector W̃ j is obtained by the following
norm constraint [5]:

‖W̃ j − X�
j‖ j,∞�‖W�(r) − X�‖∞ ∀ j ∈ {1, . . . , �} (13)

where W�(p) = (W
�1(p)
1 , . . . ,W

��(p)
� ) and ‖ · ‖∞ denotes a suitable weighted uniform norm [5, 23]

and ‖·‖ j,∞ an analogous weighted uniform norm defined in Rn j , j = 1, . . . , �. It can be noted that,
in the present context, the values of the components of the iterate vector generated by the other
process, can be accessed while the computations are still in progress; so, we have the following
result derived from [5]:
Proposition 1
Assume that (9) is verified. Then, W̃={W̃1, . . . ,W̃�} being defined according to (13), the
numerical solution of problem (8) by the parallel asynchronous Schwarz alternating method with
flexible communications associated to (12) and starting from any initial guess X0, converges to
the solution of A · X = F .

Proof
As previously said, since A is an M-matrix, the augmented matrix Ã, derived from the aug-
mentation process of the Schwarz alternating method, has the important property of being an
M-matrix. Then, the convergence of the parallel asynchronous Schwarz alternating method with
flexible communications, obtained by contraction techniques, is derived from the result presented
in [5], in the linear case. �

Remark 2
Another possibility to analyse the behaviour of parallel asynchronous Schwarz alternating method
with flexible communications, consists in using partial ordering techniques linked with the discrete
maximum principle [11]. This approach, defined in a different mathematical background, is nev-
ertheless more limiting than the one considered in Proposition 1. This method consists in starting
the iteration (12) with an initial guess X0 such that

A · X0 − F�0 (14)

In this case, for r�1, the vector W̃={W̃1,W̃2, . . . ,W̃�} belongs to the order interval 〈Xr ,

min(X�(r),Xq)〉, where X�(r) denotes the vector with block components X
� j (r)
j , j ∈ {1, 2, . . . , �}

and q = maxk ∈ Kr
s(r)

(k), where the set Kr
i contains all the iteration numbers lower than r associated

with the computation of the i th block component (see [11]). Note that the values of the components
W̃ j are also the available values of the iterate vector. In this case, if (14) is satisfied, it can be
proved that the sequence of iterate vectors satisfy the maximum discrete principle; indeed (Xr )r�0
satisfies X� · · ·�Xr� · · ·�X0.

Remark 3
A particular class of asynchronous Schwarz alternating method corresponds to the one where

the updates are performed at the end of any relaxation and defined by W̃ j = X̃
� j (r)
j . This case

corresponds to the classical parallel asynchronous iterations as defined in [7, 24]. Then, since A is an
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M-matrix, according to a result of [9], it can be proved by a straightforward way, since the uniform
weighted norm of the error at the step r is decreasing, that, for any subdomain decomposition,
the numerical solution of problem (8) by the classical parallel asynchronous Schwarz alternating
method defined by (12) and starting from any initial guess X0 converges to the solution of A·X = F .

Remark 4
Sometimes, the implementation of parallel algorithms requires the use of lexicographical ordering
or red–black ordering. The previous convergence results still hold, in both cases of natural and
red–black ordering of the mesh points, and moreover, for similar ordering of the subdomains. Let
us denote, respectively, by A and Ā the corresponding matrices associated with the two considered
ordering. Assume that A is an M-matrix, then Ā is also an M-matrix since Ā is obtained from
A by a permutation matrix P which preserves the sign of the entries and particularly the sign
of the diagonal entries. Furthermore, we have Ā= P · A · P t; thus we have Ā−1 = P · A−1 · P t.
The matrix A being an M-matrix, it follows that A−1 is a non-negative matrix [16]. Thus, Ā−1 is
also a non-negative matrix obtained from A−1 by the same permutation as the one considered for
A. Then Ā is an M-matrix. This proves that the asynchronous parallel methods converge in the
context of the red–black ordering of both mesh points and subdomains.

From the previous results, we can infer the following obvious corollary.

Corollary 1
The solution of the seven discretized systems AX = F associated with the Navier–Stokes equation,
the transport equation of the proteins and the potential equation by the parallel synchronous and
asynchronous Schwarz alternating method with or without flexible communications converge to
the solution of the considered discretized boundary-value problem for any initial guess X0 and for
any ordering of the subdomains.

5. NUMERICAL EXPERIMENTS

5.1. Sequential simulations

The domain size is 30× 0.5× 10 cm and a regular mesh of 400× 150× 20 points is defined cor-
responding to 1 200 000 points. In the sequential simulations 900 time steps have been performed.
The domain is decomposed into 128 overlapping subdomains numbered using a red–black order-
ing. Such an ordering turns out to be well adapted to parallel computation. The flow is assumed to
be laminar and the entry corresponds to a developed parabolic velocity profile. Only one protein is
injected in the entry section by prescribing the initial concentration (Dirichlet boundary condition).
The physical parameters are the following: Reynolds number is equal to 250, electrical field is
equal to 950 Vm−1 , Electrophoretic mobility is equal to 526× 10−8 m2 V−1 s−1. The filament
radius is equal to 1.5 mm.

Remark 5
The mesh size has been carefully selected after long test series. For the incompressible Navier–
Stokes equation the mesh size has been diminished in order to satisfy the analytical solution for the
channel flow and to obtain a consistent behaviour for the established jet without any interaction with
concentration or electrical field (see Reference [14]). The mesh size was also tested separately for
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Figure 2. Concentration fields (face C at bottom).

the concentration equation for constant convection coefficients and different diffusion coefficients
in order to fix the mesh reducing artificial diffusivity of the computation (see Reference [25]).

The first numerical experiments have been carried out with a 2.8 GHz Pentium 4 personal
computer. Figure 2 shows the concentration fields computed with MPDATA and implicit scheme.
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Figure 3. Effect of the corrector steps of PISO on ‖div(U)‖ (MPDATA).

In the transport process, the fluid velocity is lower near the surfaces thus the particles near the
faces A and B stay longer inside the cell. Therefore, they migrate more than those situated in the
centre of the cell. This explains why the filament is distorted near the faces A and B as shown in
Figure 2.

A comparison between the two simulations on Figure 2 clearly shows the perturbation due to
false diffusion; the filament is wider and the concentration at the exit of the cell is much lower with
MPDATA algorithm. However, both numerical results are similar and consistent with the physical
phenomenon. Therefore, it is meaningful to compare both algorithms.

Both sequential simulations take at least 40 h. So the parallelization is necessary to improve
performance.

5.2. Stability of sequential numerical algorithms

In sequential numerical simulations, PISO algorithm and implicit scheme are unconditionally stable
[12, 26]. The stability of PISO algorithm can be experimentally evaluated by checking ‖div(V)‖
after each step of the algorithm. Figures 3 and 4 show ‖div(V)‖ after each corrector step for the
simulations with, respectively, MPDATA algorithm and implicit scheme. In both case, ‖divV‖
is bounded and small. Note that our experimental stability study focuses on the corrector steps
because at those stages of the algorithm, the velocity updates are explicit operations, whereas the
computation of the velocities in the predictor step is implicit (see [12]).

However, the stability of MPDATA algorithm depends on the Courant number, which corresponds
to the worst case over the whole domain and must be less than 1 (see [18]). Figure 5 shows the
Courant number during the two steps of the second-order MPDATA algorithm, in order to check
if Courant–Friedrich–Levy (CFL) condition is verified. The time step has been adjusted in order
to obtain Courant numbers inferior to 0.5.
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5.3. Parallel simulations

Parallel simulations have been performed on an IBM Regatta p690+ of IDRIS (Institut du
Développement et des Ressources en Informatique Scientifique). This machine is a SMP con-
taining 32 Power4 processors (1.3 GHz). The parallel simulations have been performed with the
same parameters as those used in the experiments presented in Section 5.1. Due to large duration of
computation, only 20 time steps have been performed. Moreover, according to the size of the linear
systems to be solved and due to the limitation of computation means in dedicated exploitation, the
number of processors used in the parallel computations has been limited to 16.
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Remark 6
The algorithm is divided in matrix coefficient updates which are sequential and linear system
inversions that are solved by iterative parallel algorithms. The differences between synchronous
and asynchronous methods are found only in the parallel computation. Preconditioning is not
retained for practical reasons: the linear system matrix coefficients are updated at each time step
and preconditioning could be time consuming and not systematically efficient. This choice was not
made. Since there is no preconditioning phase in the present procedure, both these sequential and
parallel parts are encountered since the first time step and thus initial phase of parallel simulation is
not burdened by expensive sequential processing. We have limited our comparisons of the methods
to the first 20 time steps for obvious reasons of excessive computation costs and also the policy
of the computational centre when dedicated exploitation mode is made. But it is observed that
the computational effort for solving the iterative procedure is much higher in this transient case
than in the quasi-steady convergence process at the end of the computation. Therefore, in the first
time steps the asynchronous algorithm is submitted to a more severe challenge. The good results
obtained show the robustness and the efficiency of the procedure that will also occur in the rest
of the computation.

Both parallel synchronous and asynchronous iterative schemes of computation have been im-
plemented using message passing interface (MPI) facilities; the reader is referred to [17] for more
details. Furthermore, in order to get as close as possible of a multiplicative Schwarz alternating
method’s behaviour (see Lions [19–21]), several subdomains are assigned to each processor. Fur-
thermore, it can be noted that parallel Schwarz alternating method is more efficient if two or more
subdomains are treated by each processor. The subdomains are also treated cyclically according to
a red–black ordering; in this case, the convergence results of all parallel iterative schemes studied
in Section 4 can be applied.

There is no point in attempting to parallelize MPDATA since its computational cost is very
low with regard to the costs of the solution of linear systems. Note also that owing to the
use of staggered meshes for the velocities, the parallelization of MPDATA algorithm is dif-
ficult to implement. Indeed, the computation of the velocities requires interpolations between
the components of vi , i = 1–3 defined on each mesh. Therefore, MPDATA algorithm is not
worth being parallelized. Then the sequential processing is more important when MPDATA is
used.

The number of processors varies up to 16. Experimental results of parallel simulations are
presented in Figures 6 (elapsed times), 7 (speed-up) and 8 (efficiency). Elapsed times are also
given in Table I. In that table, elapsed times of parallelized sections of the program are indicated in
parenthesis. Experiments show that removing synchronizations in the parallel solution of the linear
systems is an efficient method. Asynchronous simulations do have better speed-up and efficiencies
than synchronous ones, except when two processors are used. In this last case, it can be noted that
the overhead due to parallelization is very low. Moreover, as the number of processors increases, the
efficiency of synchronous algorithm decreases faster than the efficiency of asynchronous algorithm.
The lack of synchronization and the use of current values of the iterate vector’s components lead
to a better efficiency for parallel Schwarz alternating methods. The efficiencies of both parallel
simulations collapse when 16 processors are used (see Figure 8).

In addition, Figures 9 and 10 display the speed-up and efficiencies of the parallelized part of
the code, namely the solution of linear systems. The fact that asynchronous iterations are more
efficient than synchronous ones is confirmed here. The efficiency collapse noted in Figure 8 is
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Figure 6. Elapsed times of parallel simulations performed on p690+.

linked to a lack of efficiency that lies in the parallel solution with 16 processors.

• In the asynchronous case, the speed-up increases slower and the efficiency decreases faster
above eight processors.

• In the synchronous case, a significant breakdown of efficiency can be noted above two
processors.

Lastly, the current efficiency analysis can be complemented with the number of relaxations
(update of components) performed by the sequential, synchronous and asynchronous algebraic
solvers. The data are displayed in Table II. Two relevant facts should be noted:

1. When synchronous algorithm is used, the number of relaxations varies as the number of
processors increases. Actually, as the number of subdomains is bound to 128, the more
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Figure 8. Efficiency of parallel simulations performed on p690+.

Table I. Elapsed times of parallel simulations performed on p690+.

Implicit scheme MPDATA algorithm

Number of proc. Sync. Async. Sync. Async.

1 5649 (s) 4431 (s)
2 3844 (3135) 3954 (3146) 3227 (2218) 3186 (2177)
4 2461 (1670) 2285 (1497) 2193 (1201) 2085 (1095)
8 1832 (1041) 1555 (769) 1670 (679) 1550 (559)

16 1499 (709) 1285 (499) 1525 (532) 1361 (371)
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Figure 10. Efficiencies of the parallelized parts of the simulations on p690+.

Table II. Number of relaxations performed in the parallel solution of algebraic systems.

Implicit scheme MPDATA algorithm

Number of proc. Sync. Async. Sync. Async.

1 1 346 784 943 984
2 1 358 484 1 378 204 951 252 958 088
4 1 373 844 1 364 016 962 618 968 300
8 1 359 392 1 395 318 963 166 979 688

16 1 592 278 1 688 674 1 183 576 1 231 690
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processors are being used, the less subdomains are assigned to each one. The order in which
boundary values are exchanged between the processors, varies as the assignment of the
subdomains changes. This order does have a slight influence on the convergence speed of
domain decomposition methods.

2. Asynchronous algorithms perform more relaxations than synchronous ones. This is a well-
known drawback of asynchronous iterative schemes, due to asynchronous message passing
and to termination issue. In asynchronous domain-decomposition methods, boundary values
of subdomains are exchanged with no order: then convergence may be slower. Because of
asynchronism, termination occurs a few iterations after the convergence is actually detected
(with synchronization, termination occurs as soon as convergence is detected); additional
relaxations are performed during this time. These relaxations improve the solution’s accuracy.

We must note that despite higher number of relaxations, elapsed time of asynchronous parallel
iterations are inferior to synchronous ones. In other words, the withdrawal of synchronization
can overcome slower convergence. Asynchronism is an efficient way to deal with communication
overhead and load unbalance, which are major issues in parallel computing.

6. CONCLUSION

Due to large computational cost, the 3D electrophoresis problem is a very hard challenge to
solve by numerical computations. Indeed, if good accuracy is expected, the sizes of the algebraic
systems become very large. So, the solution of the considered problem by numerical ways requires
large elapsed times of computations. Due to idle times owing to synchronizations, the parallel
synchronous subdomain methods have the disadvantage of reducing the speed of computation. In
the present study, we have considered parallel asynchronous subdomain methods. Such methods
do not require synchronizations between the parallel process. Moreover, load balancing techniques
are not necessary for implementing efficient parallel asynchronous Schwarz alternating methods.
So, despite the few time steps considered during the parallel simulations, the computation times
and efficiencies of the algorithms are improved. Note also that, in the present experimental study,
the separation of only one protein is considered. From a practical point of view, the considered
computational approach seems to be very attractive when several species are considered.

REFERENCES

1. Clifton MJ, Roux-de-Balmann H, Sanchez V. Electro-hydrodynamic deformation of the sample stream in
continuous-flow electrophoresis with an AC electric field. The Canadian Journal of Chemical Engineering
1992; 70:1055–1062.

2. Clifton MJ, Sanchez V. Continuous-flow electrophoresis: Numerical simulation of electrokinetics and
electrohydrodynamics. In Forty-third Congress of the International Astronautical Federation, Washington, DC,
28 August–5 September 1992.

3. Clifton MJ. Numerical simulation of protein separation by continuous-flow electrophoresis. Electrophoresis 1993;
14:1284–1291.

4. Hoffman KH, Zou J. Parallel efficiency of domain decomposition methods. Parallel Computing 1993; 19:
1375–1391.
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